The Fourier U(2) Group and Separation of Discrete Variables
نویسندگان
چکیده
منابع مشابه
The Fourier U(2) Group and Separation of Discrete Variables
The linear canonical transformations of geometric optics on two-dimensional screens form the group Sp(4,<), whose maximal compact subgroup is the Fourier group U(2) F ; this includes isotropic and anisotropic Fourier transforms, screen rotations and gyrations in the phase space of ray positions and optical momenta. Deforming classical optics into a Hamiltonian system whose positions and momenta...
متن کاملDiscrete Dubrovin Equations and Separation of Variables for Discrete Systems
A universal system of difference equations associated with a hyperelliptic curve is derived constituting the discrete analogue of the Dubrovin equations arising in the theory of finite-gap integration. The parametrisation of the solutions in terms of Abelian functions of Kleinian type (i.e. the higher-genus analogues of the Weierstrass elliptic functions) is discussed as well as the connections...
متن کاملthe study of bright and surface discrete cavity solitons dynamics in saturable nonlinear media
امروزه سالیتون ها بعنوان امواج جایگزیده ای که تحت شرایط خاص بدون تغییر شکل در محیط منتشر می-شوند، زمینه مطالعات گسترده ای در حوزه اپتیک غیرخطی هستند. در این راستا توجه به پدیده پراش گسسته، که بعنوان عامل پهن شدگی باریکه نوری در آرایه ای از موجبرهای جفت شده، ظاهر می گردد، ضروری است، زیرا سالیتون های گسسته از خنثی شدن پراش گسسته در این سیستم ها بوسیله عوامل غیرخطی بوجود می آیند. گسستگی سیستم عامل...
PARTICLE SWARM-GROUP SEARCH ALGORITHM AND ITS APPLICATION TO SPATIAL STRUCTURAL DESIGN WITH DISCRETE VARIABLES
Based on introducing two optimization algorithms, group search optimization (GSO) algorithm and particle swarm optimization (PSO) algorithm, a new hybrid optimization algorithm which named particle swarm-group search optimization (PS-GSO) algorithm is presented and its application to optimal structural design is analyzed. The PS-GSO is used to investigate the spatial truss structures with discr...
متن کاملDiscrete Fourier Analysis and Chebyshev Polynomials with G2 Group
Abstract. The discrete Fourier analysis on the 300–600–900 triangle is deduced from the corresponding results on the regular hexagon by considering functions invariant under the group G2, which leads to the definition of four families generalized Chebyshev polynomials. The study of these polynomials leads to a Sturm–Liouville eigenvalue problem that contains two parameters, whose solutions are ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry, Integrability and Geometry: Methods and Applications
سال: 2011
ISSN: 1815-0659
DOI: 10.3842/sigma.2011.053